Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design

نویسندگان

  • Christopher H. Hendon
  • Keith T. Butler
  • Alex M. Ganose
  • Yuriy Román-Leshkov
  • David O. Scanlon
  • Geoffrey A. Ozin
  • Aron Walsh
چکیده

The archetypal silica- and aluminosilicate-based zeolite-type materials are renowned for wide-ranging applications in heterogeneous catalysis, gas-separation and ion-exchange. Their compositional space can be expanded to include nanoporous metal chalcogenides, exemplified by germanium and tin sulfides and selenides. By comparison with the properties of bulk metal dichalcogenides and their 2D derivatives, these open-framework analogues may be viewed as three-dimensional semiconductors filled with nanometer voids. Applications exist in a range of molecule size and shape discriminating devices. However, what is the electronic structure of nanoporous metal chalcogenides? Herein, materials modeling is used to describe the properties of a homologous series of nanoporous metal chalcogenides denoted np-MX2, where M = Si, Ge, Sn, Pb, and X = O, S, Se, Te, with Sodalite, LTA and aluminum chromium phosphate-1 structure types. Depending on the choice of metal and anion their properties can be tuned from insulators to semiconductors to metals with additional modification achieved through doping, solid solutions, and inclusion (with fullerene, quantum dots, and hole transport materials). These systems form the basis of a new branch of semiconductor nanochemistry in three dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New materials for tunable plasmonic colloidal nanocrystals.

We present a review on the emerging materials for novel plasmonic colloidal nanocrystals. We start by explaining the basic processes involved in surface plasmon resonances in nanoparticles and then discuss the classes of nanocrystals that to date are particularly promising for tunable plasmonics: non-stoichiometric copper chalcogenides, extrinsically doped metal oxides, oxygen-deficient metal o...

متن کامل

Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries

Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report t...

متن کامل

Stereochemistry of post-transition metal oxides: revision of the classical lone pair model.

The chemistry of post transition metals is dominated by the group oxidation state N and a lower N-2 oxidation state, which is associated with occupation of a metal s(2) lone pair, as found in compounds of Tl(I), Pb(II) and Bi(III). The preference of these cations for non-centrosymmetric coordination environments has previously been rationalised in terms of direct hybridisation of metal s and p ...

متن کامل

Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising ...

متن کامل

Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.

Direct band gap copper indium chalcogenides are of great technological importance in part because of their high photovoltaic conversion efficiency. Covalent superlattices constructed from copper indium chalcogenide clusters are of particular interest because they may combine open framework architecture with semiconducting properties. Here two photoluminescent covalent superlattices built from c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2017